Buscar este blog

domingo, 20 de julio de 2014

¿Puede el Banco Central ser Insolvente?

Written by  

Como siempre, Vicenç Aparicio da en el clavo cuando pregunta, ¿puede el Banco Central ser insolvente? La pregunta es importante porque el BC puede imprimir dinero cuando y cuanto quiera por lo que si algún día se quedara sin capital, en principio nada le impediría imprimir dinero para recapitalizarse a sí mismo. La respuesta simple es que sí, un banco central puede ser insolvente y la prueba es que ha habido bancos centrales que lo han sido. El último ejemplo, si no estoy equivocado, es el del Banco Central de Zimbabwe. Pero la respuesta de verdad es un poco más complicada y (CREO) que tengo la respuesta. Aqui va, aunque hoy los no economistas me tendreis que perdonar porque para pensar sobre este tema hoy necesito ser un poco técnico.

Veamos, el balance del banco central. Por un lado, el banco central puede emitir dinero. El dinero, de hecho, es un papelito que representa una deuda sin interés. Llamamos a esta parte M. El dinero imprimido es, pues, un pasivo. Por otro lado el BC puede deber dinero a instituciones lo que llamamos N.

Todos estos pasivos se utilizan o bien para comprar deuda de los gobiernos, D, deuda o depósitos del sector privado (sobre todo bancos), P, o moneda extranjera.

El Capital del BC central es la diferencia entre los activos (D+P+R) i los pasivos (M+N). Como ejemplo, el último balance del que se dispone es del dia 11 de Noviembre de 2011 (http://www.ecb.int/press/pr/wfs/2011/html/fs111115.en.html). Ese día el Balance del BCE era el siguiente:

Es interesante ver que D, la deuda propiedad del BCE es “solo” de 34 mil millones de euros sobre un total de 2,3 billones. El capital total del BCE es “solo” de 81 mil millones.

Hasta aquí todo es muy parecido a un banco normal (excepto que el banco normal, en lugar de imprimir dinero tiene dinero de los depositantes). Si el BC fuera un banco normal, se diría que es insolvente  si el capital es negativo, es decir si D+P+R es más grande que M+O. Por ejemplo, si de repente la D del gobierno griego pasara a valer cero porque el gobierno griego no paga, el capital de este banco podría pasar a ser negativo. Es así como el impago de un país puede acabar quebrando al banco que en su día le prestó dinero. Bajo esta perspectiva, pues, uno podría llegar a la conclusión de que el BC será insolvente cuando sus activos D+P+R sean menores que sus pasivos, M+N. Si los activos del BC caen porque Italia o España pasan a ser insolventes, eso puede generar una pérdidas en los activos del BCE lo pueden llevar a tener un K negativo.

El BC, sin embargo, no es un banco normal sino que tiene la capacidad de imprimir dinero, por lo que la contabilidad normal como la descrita aquí no funciona ya que uno de los activos principales del BC es el valor presente descontado de todos los recursos que va a conseguir con el impuesto inflacionario y éste, no está en el balance! ¿Cómo debería ser ese “balance general intertemporal”?

Llamemos a este activo S, donde S quiere decir “señoriaje” o, lo que es equivalente, recaudación real proveniente de imprimir dinero (la palabra “señoriaje” proviene de la época medieval cuando los “señores feudales” obtenian recursos a base de reducir la cantidad de oro que había en las monedas que circulaban en sus feudos, quedándose ellos con el oro restante. Era una especie de “impuesto” asociado al hecho de que eran ellos los que tenían la capacidad de imprimir monedas). Al otro lado del balance se tendrían que añadir el valor presente descontado de los dividendos que el BC paga al Estado (normalmente, el dinero que el BC gana se lo pasa a los gobiernos). Llamemos a esta cantidad, T. También se tendrían que añadir al pasivo el valor presente descontado de todos los costes de administrar el BC pero como esa es una cantidad menor y no altera el argumento. Por lo tanto, al balance “normal” del BC hay que añadir dos partidas, S (los ingresos que genera el poder imprimir dinero en cantidades ilimitadas) y T (el pago de ese dinero al gobierno -o en el caso del Euro, gobiernos- que son los propietarios del BC. Si TODO el dinero que genera el BC va a parar al gobierno, la S y la T son iguales por lo que si el BC es insolvente bajo la primera definición también lo es una vez se tiene en cuenta la capacidad de imprimir dinero. Naturalmente, ahora existe la posibilidad de que el gobierno le diga al BC que se puede quedar con los recursos que genera la impresión de dinero. Es decir, que utilice el dinero que imprime para recapitalizarse. ¿Puede evitar eso la insolvencia? Pues depende de si el agujero que hay es mayor que S o no. La pregunta de si el BC puede acabar siendo insolvente es la misma, pues, que si hay límites a S. Es decir, ¿es ilimitada la cantidad de recursos que puede generar el BC a base de imprimir dinero? La respuesta aquí es: LA CURVA DE LAFFER!!!


Me explico. La recaudación anual del impuesto inflacionario es igual a R*M/P donde R es el tipo de interés nominal multiplicado por la masa monetaria real. El tipo de interés real es la tasa de inflación más el tipo real R=r+PI (donde PI es la tasa de inflación). La demanda real de dinero, por su parte, depende negativamente del tipo de interés nominal. Cuando el BC imprime dinero, por lo tanto, genera inflación y eso hace bajar la demanda real de dinero. ¿Qué pasa con la recaudación total? Pues resulta que puede subir o bajar dependiendo de a qué lado de la curva de Laffer nos encontremos. Es decir, que si bien es cierto que el BC puede imprimir infinitas cantidades de dinero, no es cierto que de ahí pueda obtener infinita fuente de ingresos por lo que el término S no es ilimitado. Por lo tanto, si la pérdida por las quiebras de Italia, España o Grecia no pueden ser compensadas por el capital existente más todo el valor presente de todos los recursos fiscales que pueda generar el BCE, el BCE puede hacer quiebra.



Resumiendo, creo que la respuesta a la pregunta de Vicenç es que si. Que un banco central puede quebrar porque el hecho de que pueda imprimir infinita cantidad de dinero, no puede apropiarse de infinita cantidad de recursos. La recaudación fiscal que puede obtener un banco central es finita. Es la curva de Laffer que estudiamos en Teoria IV, cuando Vicenç era estudiante.

No hay comentarios:

Publicar un comentario